Homework #5


Feel free to use http://www.continuummechanics.org/interactivecalcs.html when applicable.

  1. Show that
    \[ \epsilon_{ijk} \, \epsilon_{ijk} = 6 \]




  2. Given the stress tensor

    \[ \boldsymbol{\sigma} = \left[ \matrix{ 10 & 20 & 30 \\ 20 & 40 & 50 \\ 30 & 50 & 60 } \right] \qquad \]
    One of the two stress tensors below is equivalent to the one above, differing only by a coordinate transformation. The other one represents a different stress state. Which is equivalent and which is different?

    \[ \left[ \matrix{ 4.0341 & 27.291 & 14.519 \\ 27.291 & 76.619 & 46.048 \\ 14.519 & 46.048 & 29.347 } \right] \qquad \qquad \qquad \left[ \matrix{ \;\;\;30.597 & -5.733 & -15.201 \\ \;-5.733 & \;41.305 & \;\;\;18.926 \\ -15.201 & \;18.926 & \;\;\;48.098 } \right] \]




  3. With the same stress tensor

    \[ \boldsymbol{\sigma} = \left[ \matrix{ 10 & 20 & 30 \\ 20 & 40 & 50 \\ 30 & 50 & 60 } \right] \]
    Use \(E = 100\) and \(\nu = 0.333\) (metals) and demonstrate that the deviatoric stress is proportional to the deviatoric strain.








No additional homework problems this week. I've waited to late and I feel guilty about adding another one at the last minute.